Technical Documentation
Basic Docs
  • X (Twitter)
  • Discord
  • 👋Welcome
  • Introduction to CapsureLabs Ecosystem and Architecture
    • Overview of CapsureLabs System and Components
    • Target Audiences and Use Cases
    • Security Model and Access Management
  • System Architecture of CapsureLabs
    • Platform Architecture Overview
    • Microservices Architecture
    • Blockchain and External System Integration
  • API and Integrations
    • REST and WebSocket API
    • GraphQL API for Developers
    • Integration with Third-Party Services and Modules
  • Tools for Traders and Investors
    • AiTradeBot: Algorithms and Prediction
    • NFT Sniper: Data Analysis and Automation
    • DeFi Yield Optimizer: Integration and Yield Automation
    • Arbitrage Scanner: Automated Trade Execution
  • Smart Contract Development and Deployment
    • Essential Patterns and Practices in Smart Contract Development
    • Development Tools: Solidity, Hardhat, Truffle
    • Gas Optimization Solutions
  • Tools for Content Creators
    • NFT Creator Hub: Generation and Management
    • MetaGallery: Creating Virtual Galleries
    • IP Protection Tool: Smart Contracts for IP Protection
    • Revenue Splitter: Automated Revenue Distribution
  • Developer Tools
    • Web3 Dev Toolkit: Libraries and Frameworks
    • Smart Contract Debugger: Contract Testing
    • Chain Interoperability Tool: Building Cross-Chain Applications
  • Wallet Management and Monitoring
    • Wallet Aggregator: Managing Multiple Wallets
    • Decentralized Identity Manager: Access Control and Management
    • Transaction and Balance Monitoring Tools
  • Gaming and Metaverse
    • Game Asset Tracker: Monitoring Game Assets
    • Play-to-Earn Optimizer: Earnings Optimization
    • Virtual Land Manager: Virtual Real Estate Management
  • DAO and Decentralized Governance
    • DAO Governance Tool: Creation and Management
    • Community Incentive Manager: Token and Reward Management
  • Security Protocols and Data Protection
    • Authentication and Access Control
    • Data and Communication Encryption Methods
    • Compliance and Regulatory Alignment
  • Cloud Infrastructure and DevOps
    • Server and Network Configuration Management
    • Monitoring, CI/CD, and Disaster Recovery
    • Auto-Scaling and Load Balancing
  • Payment Gateways and Financial Integration
    • Cryptocurrency Payment Gateways
    • Fiat Payment Systems Integration
  • Machine Learning and Prediction Techniques
    • AI Algorithms for Data Analysis
    • Real-Time User Behavior Analysis
    • Automation and Content Generation
  • Testing and Quality Assurance
    • Automated and Manual Testing
    • Load Testing and Performance Optimization
    • System Monitoring and Auto-Recovery
  • GitHub
Powered by GitBook
On this page
  • 1.1 NFT Sniper Overview
  • 1.2 Setting Up NFT Sniper Environment
  • 1.2.1 Prerequisites
  • 1.2.2 API Key Setup
  • 1.3 Data Collection and Analysis
  • 1.3.1 Retrieving NFT Data
  • 1.3.2 Analyzing NFT Rarity
  • 1.4 Trend Analysis with Machine Learning
  • 1.4.1 Trend Analysis with Linear Regression
  • 1.5 Automated NFT Selection Logic
  • 1.6 Automating and Running NFT Sniper
  1. Tools for Traders and Investors

NFT Sniper: Data Analysis and Automation

1.1 NFT Sniper Overview

NFT Sniper is designed to assist traders and investors in identifying promising NFTs based on key metrics such as price, rarity, and trend analysis. This tool automates the scanning of NFT marketplaces to find potential investment opportunities based on user-defined criteria.


1.2 Setting Up NFT Sniper Environment

This section covers the environment setup and dependencies for the NFT Sniper script

1.2.1 Prerequisites

  • Python (version 3.8 or later)

  • Requests (for API interaction with marketplaces)

  • Pandas (for data manipulation)

  • Scikit-Learn (for basic trend analysis)

Install the required libraries

pip install requests pandas scikit-learn

1.2.2 API Key Setup

Obtain an API key from a supported NFT marketplace (e.g., OpenSea) and set it as an environment variable.

import os

# Set API key for marketplace access
os.environ["MARKETPLACE_API_KEY"] = "your_api_key_here"

1.3 Data Collection and Analysis

This section provides a Python script that collects NFT data from a marketplace API and analyzes it for price, rarity, and trends.

1.3.1 Retrieving NFT Data

The following script fetches NFT data, such as price, rarity, and recent_sales, from an API endpoint.

import requests
import pandas as pd

# Function to fetch NFT data
def fetch_nft_data(collection_slug, limit=50):
    api_key = os.getenv("MARKETPLACE_API_KEY")
    url = f"https://api.opensea.io/api/v1/assets?collection={collection_slug}&limit={limit}"
    headers = {"Authorization": f"Bearer {api_key}"}
    
    response = requests.get(url, headers=headers)
    if response.status_code == 200:
        data = response.json()
        return pd.json_normalize(data['assets'])
    else:
        print(f"Error fetching data: {response.status_code}")
        return pd.DataFrame()
        
# Fetch sample data
collection_slug = "your_collection_slug"
nft_data = fetch_nft_data(collection_slug)
print(nft_data.head())

1.3.2 Analyzing NFT Rarity

Rarity is a critical factor in determining an NFT’s value. This script calculates a rarity score based on the unique traits of each NFT.

# Sample rarity scoring
def calculate_rarity_score(nft_traits):
    base_score = 1000
    for trait in nft_traits:
        trait_score = base_score / (trait['trait_count'] + 1)
        base_score += trait_score
    return base_score

# Apply rarity scoring to each NFT
nft_data['rarity_score'] = nft_data['traits'].apply(calculate_rarity_score)
nft_data = nft_data.sort_values(by='rarity_score', ascending=False)
print(nft_data[['name', 'rarity_score']].head())

1.4 Trend Analysis with Machine Learning

Using recent sales data, we can apply a trend analysis to highlight NFTs gaining popularity. Here, we use linear regression to analyze recent sales volume trends.

1.4.1 Trend Analysis with Linear Regression

from sklearn.linear_model import LinearRegression
import numpy as np

# Function to calculate trend for recent sales
def calculate_trend(recent_sales):
    # Assume recent_sales contains a list of timestamps or sale counts over time
    if len(recent_sales) < 2:
        return 0  # Not enough data for a trend
    
    x = np.array(range(len(recent_sales))).reshape(-1, 1)
    y = np.array(recent_sales)
    model = LinearRegression().fit(x, y)
    return model.coef_[0]  # Slope of the trend

# Add trend score to each NFT
nft_data['trend_score'] = nft_data['sales'].apply(calculate_trend)
print(nft_data[['name', 'trend_score']].head())

1.5 Automated NFT Selection Logic

With the data collected and analyzed, we can define criteria for selecting NFTs to target for investment. This example sets criteria based on price, rarity, and trend scores.

# Define selection criteria
MAX_PRICE = 0.5  # Max price in ETH
MIN_RARITY_SCORE = 500  # Minimum rarity score
MIN_TREND_SCORE = 1  # Minimum trend score for positive growth

def select_nfts(nft_data):
    selected_nfts = nft_data[
        (nft_data['price'] <= MAX_PRICE) &
        (nft_data['rarity_score'] >= MIN_RARITY_SCORE) &
        (nft_data['trend_score'] >= MIN_TREND_SCORE)
    ]
    return selected_nfts[['name', 'price', 'rarity_score', 'trend_score']]

# Execute selection
recommended_nfts = select_nfts(nft_data)
print("Recommended NFTs for purchase:")
print(recommended_nfts)

1.6 Automating and Running NFT Sniper

To automate NFT Sniper, the code can be wrapped in a loop that periodically fetches and analyzes data.

import time

def run_nft_sniper(collection_slug, interval=300):
    while True:
        nft_data = fetch_nft_data(collection_slug)
        if not nft_data.empty:
            nft_data['rarity_score'] = nft_data['traits'].apply(calculate_rarity_score)
            nft_data['trend_score'] = nft_data['sales'].apply(calculate_trend)
            recommendations = select_nfts(nft_data)
            print("Recommended NFTs:", recommendations)
        else:
            print("No data available.")
        
        time.sleep(interval)  # Run every 5 minutes

# Start NFT Sniper
run_nft_sniper("your_collection_slug")
PreviousAiTradeBot: Algorithms and PredictionNextDeFi Yield Optimizer: Integration and Yield Automation

Last updated 7 months ago

Page cover image