NFTSniper is designed to assist traders and investors in identifying promising NFTs based on key metrics such as price, rarity, and trend analysis. This tool automates the scanning of NFT marketplaces to find potential investment opportunities based on user-defined criteria.
1.2 Setting Up NFT Sniper Environment
This section covers the environment setup and dependencies for the NFT Sniper script
1.2.1 Prerequisites
Python (version 3.8 or later)
Requests (for API interaction with marketplaces)
Pandas (for data manipulation)
Scikit-Learn (for basic trend analysis)
Install the required libraries
pip install requests pandas scikit-learn
1.2.2 API Key Setup
Obtain an API key from a supported NFT marketplace (e.g., OpenSea) and set it as an environment variable.
import os
# Set API key for marketplace access
os.environ["MARKETPLACE_API_KEY"] = "your_api_key_here"
1.3 Data Collection and Analysis
This section provides a Python script that collects NFT data from a marketplace API and analyzes it for price, rarity, and trends.
1.3.1 Retrieving NFT Data
The following script fetches NFT data, such as price, rarity, and recent_sales, from an API endpoint.
import requests
import pandas as pd
# Function to fetch NFT data
def fetch_nft_data(collection_slug, limit=50):
api_key = os.getenv("MARKETPLACE_API_KEY")
url = f"https://api.opensea.io/api/v1/assets?collection={collection_slug}&limit={limit}"
headers = {"Authorization": f"Bearer {api_key}"}
response = requests.get(url, headers=headers)
if response.status_code == 200:
data = response.json()
return pd.json_normalize(data['assets'])
else:
print(f"Error fetching data: {response.status_code}")
return pd.DataFrame()
# Fetch sample data
collection_slug = "your_collection_slug"
nft_data = fetch_nft_data(collection_slug)
print(nft_data.head())
1.3.2 Analyzing NFT Rarity
Rarity is a critical factor in determining an NFT’s value. This script calculates a rarity score based on the unique traits of each NFT.
Using recent sales data, we can apply a trend analysis to highlight NFTs gaining popularity. Here, we use linear regression to analyze recent sales volume trends.
1.4.1 Trend Analysis with Linear Regression
from sklearn.linear_model import LinearRegression
import numpy as np
# Function to calculate trend for recent sales
def calculate_trend(recent_sales):
# Assume recent_sales contains a list of timestamps or sale counts over time
if len(recent_sales) < 2:
return 0 # Not enough data for a trend
x = np.array(range(len(recent_sales))).reshape(-1, 1)
y = np.array(recent_sales)
model = LinearRegression().fit(x, y)
return model.coef_[0] # Slope of the trend
# Add trend score to each NFT
nft_data['trend_score'] = nft_data['sales'].apply(calculate_trend)
print(nft_data[['name', 'trend_score']].head())
1.5 Automated NFT Selection Logic
With the data collected and analyzed, we can define criteria for selecting NFTs to target for investment. This example sets criteria based on price, rarity, and trend scores.