AI Algorithms for Data Analysis
1.1 Overview
1.2 Predictive Model for User Engagement Analysis
1.2.1 Data Preparation and Processing
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
# Load and clean dataset
data = pd.read_csv("user_engagement.csv")
data.dropna(inplace=True) # Remove missing values
# Feature selection
X = data[['time_spent', 'actions', 'pages_visited', 'user_age']]
y = data['engagement_label'] # 1 for high engagement, 0 for low engagement
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Feature scaling
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)1.2.2 Model Training: Random Forest Classifier
1.2.3 Saving and Loading the Model for Production
1.3 Data Analysis and Prediction API Implementation
1.4 Request Example using cURL
1.5 Expected Response
1.6 Advanced Usage: Neural Network for Predictive Modeling
Last updated
