Page cover

Load Testing and Performance Optimization

1.1 Overview

This section of the Testing and Quality Assurance documentation outlines the methods and tools used for load testing and performance optimization within the CapsureLabs platform. This approach aims to ensure that the platform can scale efficiently under high demand while maintaining optimal response times and resource utilization.


1.2 Objectives of Load Testing and Performance Optimization

Ensure that the platform can handle peak loads without failure or major degradation.


1.3 Tools for Load Testing and Performance Optimization

Widely used for load testing APIs and web applications.


1.4 Load Testing Methodology

Identify key workflows to test, such as user registration, login, NFT minting, and asset transfer.


1.5 Load Testing Configurations

1.5.1 API Load Testing with JMeter

<TestPlan>
  <ThreadGroup>
    <stringProp name="ThreadGroup.num_threads">500</stringProp>
    <stringProp name="ThreadGroup.ramp_time">30</stringProp>
    <stringProp name="LoopController.loops">100</stringProp>
  </ThreadGroup>
  <HTTPSamplerProxy>
    <stringProp name="HTTPSampler.domain">api.capsurelabs.com</stringProp>
    <stringProp name="HTTPSampler.path">/api/v1/transaction</stringProp>
    <stringProp name="HTTPSampler.method">POST</stringProp>
    <elementProp name="HTTPsampler.Arguments" elementType="Arguments">
      <collectionProp name="Arguments.arguments">
        <elementProp name="amount" elementType="HTTPArgument">
          <stringProp name="Argument.value">100</stringProp>
        </elementProp>
      </collectionProp>
    </elementProp>
  </HTTPSamplerProxy>
</TestPlan>

1.5.2 Concurrent Users with Locust

from locust import HttpUser, task, between

class LoadTestUser(HttpUser):
    wait_time = between(1, 5)

    @task
    def view_dashboard(self):
        self.client.get("/api/v1/dashboard")

1.6 Performance Optimization Strategies

1.6.1 Database Indexing and Query Optimization

CREATE INDEX idx_user_id ON transactions (user_id);

1.6.2 Caching Strategies

import redis
cache = redis.StrictRedis(host='localhost', port=6379)
result = cache.get("user_data") if cache.exists("user_data") else db.fetch("user_data")

1.6.3 Load Balancing and Auto-Scaling

{
  "AutoScalingGroupName": "capsurelabs-scaling",
  "LaunchConfigurationName": "capsure-launch-config",
  "MinSize": 1,
  "MaxSize": 10,
  "DesiredCapacity": 5
}

1.6.4 Asynchronous Processing

from celery import Celery
app = Celery('tasks', broker='redis://localhost:6379/0')

@app.task
def process_large_data():

Last updated